
Build Better Apps
with Angular 2

Strong grasp on how to
build a single, basic feature
in Angular 2

Agenda

The Angular 2 Big Picture

Prerequisite Primer in Tooling

Component Fundamentals

Templates

Services

Routing

The Angular 2 Big Picture

The Demo Application
• A simple web application with basic features
• We will be building out a new widgets feature
• Feel free to use the existing code as a reference point
• Please explore! Don't be afraid to try new things!

http://bit.ly/fem-ng2-simple-app

http://onehungrymind.com/fem-examples/

http://bit.ly/fem-ng2-no-ts

So why Angular 2?

Why Angular 2?
• Distilled all the best practices of Angular 1.x into

Angular 2
• By focusing on standards, we get twice the power with

half the framework
• Dramatically improved changed detection with a

relentless focus on speed and performance
• Reactive mechanisms baked into the framework
• Teamwork! The Angular team is working with some

really smart people from other projects to make
Angular and web development awesome

The Big Picture

The Main Building Blocks
• Module
• Component
• Metadata
• Template
• Data Binding
• Service
• Directive
• Dependency Injection

Bootstrapping the App
• Import the bootstrap module
• Import your top-level component
• Import application dependencies
• Call bootstrap and pass in your top-level component as

the first parameter and an array of dependencies as the
second

import {bootstrap} from 'angular2/platform/browser';  
import {ROUTER_PROVIDERS} from 'angular2/router';  
import {AppComponent} from './app.component';  
 
bootstrap(AppComponent, [ 
 ROUTER_PROVIDERS 
]);

Bootstrap

Module
• Uses ES6 module syntax
• Angular 2 applications use modules as the core

mechanism for composition
• Modules export things that other modules can import
• Keep your modules fine-grained and self-documenting

// In home.component.ts
export class HomeComponent { }

// In app.component.ts
import {HomeComponent} from './home/home.component';

Module

Component
• Components are just ES6 classes
• Providers (Services) are injected in the constructor
• Need to explicitly define providers and directives within

the component decoration
• Hook into the component lifecycle with hooks
• Properties and methods of the component class are

available to the template

export class HomeComponent implements OnInit{ 
 title: string = 'Home Page';  
 body: string = 'This is the about home body';  
 message: string;  
 
 constructor(private _stateService: StateService) { } 
 
 ngOnInit() { 
 this.message = this._stateService.getMessage(); 
 } 
 
 updateMessage(m: string): void {  
 this._stateService.setMessage(m); 
 } 
}

Component

Metadata
• Metadata allows Angular to process a class
• We can attach metadata with TypeScript using

decorators
• Decorators are just functions
• Most common is the @Component() decorator
• Takes a config option with the selector, template(Url),

providers, directives, pipes and styles

@Component({ 
 selector: 'home',  
 templateUrl: 'app/home/home.component.html' 
})  
export class HomeComponent{ }

Metadata

Template
• A template is HTML that tells Angular how to render a

component
• Templates include data bindings as well as other

components and directives
• Angular 2 leverages native DOM events and properties

which dramatically reduces the need for a ton of built-
in directives

• Angular 2 leverages shadow DOM to do some really
interesting things with view encapsulation

Template

@Component({ 
 selector: 'experiment',  
 templateUrl: './experiment.detail.component.html',  
 styles: [`  
 .experiment { 
 cursor: pointer; 
 outline: 1px lightgray solid; 
 padding: 5px; 
 margin: 5px; 
 } 
 `]  
})

Template

@Component({ 
 selector: 'experiment',  
 template: `  
 <div class="experiment" (click)="doExperiment()"> 
 <h3>{{ experiment.name }}</h3> 
 <p>{{ experiment.description }}</p> 
 <p>{{experiment.completed}}</p> 
 </div> 
 `,  
 styles: [`  
 .experiment { 
 cursor: pointer; 
 outline: 1px lightgray solid; 
 padding: 5px; 
 margin: 5px; 
 } 
 `]  
})

Template

Data Binding
• Enables data to flow from the component to template

and vice-versa
• Includes interpolation, property binding, event binding,

and two-way binding (property binding and event
binding combined)

• The binding syntax has expanded but the result is a
much smaller framework footprint

Data Binding

<h1>{{title}}</h1>  
<p>{{body}}</p>  
<hr/>  
<experiment *ngFor="#experiment of experiments" 
 [experiment]="experiment"></experiment>  
<hr/>  
<div>  
 <h2 class="text-error">Experiments: {{message}}</h2>  
 <form class="form-inline">  
 <input type="text" 
 [(ngModel)]="message" placeholder="Message">  
 <button type="submit" class="btn" 
 (click)="updateMessage(message)">Update Message 
 </button>  
 </form>  
</div>

Data Binding

Service
• A service is just a class
• Should only do one specific thing
• Take the burden of business logic out of components
• Decorate with @Injectable when we need to inject

dependencies into our service

import {Injectable} from 'angular2/core';  
import {Experiment} from './experiment.model';  
 
@Injectable() 
export class ExperimentsService { 
 private experiments: Experiment[] = []; 
 
 getExperiments(): Experiment[] { 
 return this.experiments;  
 }; 
}

Service

Directive
• A directive is a class decorated with @Directive
• A component is just a directive with added template

features
• Built-in directives include structural directives and

attribute directives

import { Directive, ElementRef } from 'angular2/core';  
 
@Directive({ 
 selector: '[femBlinker]' 
})  
 
export class FemBlinker { 
 constructor(element: ElementRef) { 
 let interval = setInterval(() => { 
 let color = element.nativeElement.style.color;  
 element.nativeElement.style.color 
 = (color === '' || color === 'black') ? 'red' : 'black';  
 }, 300); 
 
 setTimeout(() => { 
 clearInterval(interval); 
 }, 10000);  
 } 
}

Directive

Dependency Injection
• Supplies instance of a class with fully-formed

dependencies
• Maintains a container of previously created service

instances
• To use DI for a service, we register it as a provider in

one of two ways: when bootstrapping the application,
or in the component metadata

// experiments.service.ts
import {Injectable} from 'angular2/core';  
 
@Injectable() 
export class ExperimentsService { }

// experiments.component.ts
import {ExperimentsService} from '../common/
experiments.service';  
import {StateService} from '../common/state.service';  
 
export class ExperimentsComponent { 
 constructor( 
 private _stateService: StateService, 
 private _experimentsService: ExperimentsService) {} 
}

Dependency Injection

Change Detection
• Checks for changes in the data model so that it can re-

render the DOM
• Changes are caused by events, XHR, and timers
• Each component has its own change detector
• We can use ChangeDetectionStrategy.OnPush along

with immutable objects and/or observables.
• We can tell Angular to check a particular component by

injecting ChangeDetectorRef and calling
markForCheck() inside the component

export interface Item { 
 id: number;  
 name: string;  
 description: string;  
};  
 
export interface AppStore { 
 items: Item[]; 
 selectedItem: Item; 
};

Code Sample

Testing
• Angular wraps Jasmine methods
• Import all necessary Jasmine methods from angular2/

testing
• Import the classes to test
• Include providers by importing beforeEachProviders

and then calling it with a method that returns an array
of imported providers

• Inject providers by calling inject([arrayOfProviders],
(providerAliases) => {}) inside a beforeEach or it block

import { describe, it, expect } from 'angular2/testing';  
 
import { AppComponent } from './app.component';  
 
describe('AppComponent', () => { 
 it('should be a function', () => { 
 expect(typeof AppComponent).toBe('function');  
 }); 
});

Tests!

Architectural Best Practices
• Include all files pertinent to a component in the same folder
• Remember CIDER for creating components: (Create class,

Import dependencies, Decorate class, Enhance with
composition, Repeat for sub-components

• Keep templates small enough to put in the main component
file directly

• Delegate business logic from the component to a provider
• Don’t be afraid to split a component up if it is growing too

large
• Constantly consider change detection implications as you

develop an app

Demonstration

Challenges
• Make sure that you can run the sample application
• Identify the major Angular 2 pieces in the sample

application
• Add a new property to one of the feature components

and bind to it in the view
• Add a new property to the StateService and consume it

in a component
• BONUS Create an interface for the new property and

type it in the StateService and your consuming
component

Prerequisite Primer in Tooling

Tooling Primer
• Module Loading
• Webpack
• ES6
• ES5
• TypeScript
• Typings

Module Loading
• Modular code is not required to develop with Angular,

but it is recommended
• Allows us to easily use specific parts of a library
• Erases collisions between two different libraries
• We don’t have to include script tags for everything
• Because modules are not supported, we have to

translate a module (file) to a pseudo module (wrapped
function)

Webpack
• One of the most popular module loaders
• Allows us to include any sort of file as a module (CSS,

JSON, etc.)
• Useful not only for module loading, but also the entire

build process

Webpack

ES6
• ES6/ES2015 is the latest standard for Javascript
• Comes with many helpful additions, such as a module

system, new array methods, classes, multi-line
templates, and arrow functions

• The most important features for us are modules and
classes

• Although we don’t have to use it, it greatly enhances
the development experience

• Classes and modules FTW!

class Point { 
 constructor(x, y) { 
 this.x = x; 
 this.y = y; 
 } 
 toString() { 
 return `(${this.x}, ${this.y})`;  
 } 
}

ES6 Class

TypeScript
• Is a typed superset of Javascript
• Is a compiled language, so it catches errors before

runtime
• Includes the features of ES6 but with types, as well as

better tooling support
• TypeScript allows us to decorate our classes via

@<Decorator> the syntax
• Classes, modules, types, interfaces and decorators

FTW!

interface ClockInterface { 
 currentTime: Date; 
 setTime(d: Date); 
}  
 
class Clock implements ClockInterface { 
 currentTime: Date; 
 setTime(d: Date) { 
 this.currentTime = d; 
 } 
 constructor(h: number, m: number) { } 
}

TypeScript Class

Typings
• We use the typings NPM package to handle the type

definitions associated with third-party libraries
• By creating a postinstall script in package.json, we can

install the appropriate typings immediately after all
NPM packages have been downloaded

• To install a definition file for a particular library, run
typings install -g <package> --ambient --save

• Treat the typings.json file just like the package.json file

Angular 2 with ES6
• Almost the same as TypeScript without types and

interfaces
• Define dependency paramenters explicitly for DI to

work properly
• Use the same build system, just switch out your

transpiler (babel). Or use your TypeScript compiler and
just not use TypeScript features

• Babel has experimental features that TypeScript does
not

Angular 2 with ES5
• Supported natively
• No module system like angular 1.x. Use IIFE’s or other

3rd party module system
• Exposes a global ng namespace with methods to build

application
• No need for a build system or transpiler
• No type files or configs
• Documentation is lacking
• ot recommended

Demonstration

Challenges
• We'll play this by ear. :D

Component Fundamentals

Component Fundamentals
• Class
• Import
• Decorate
• Enhance
• Repeat
• Lifecycle Hooks

Component

Class !== Inheritance

Class
• Create the component as an ES6 class
• Properties and methods on our component class will

be available for binding in our template

export class ExperimentsComponent { }

Class

Import
• Import the core Angular dependencies
• Import 3rd party dependencies
• Import your custom dependencies
• This approach gives us a more fine-grained control over

the managing our dependencies

import {Component} from 'angular2/core';  
 
export class ExperimentsComponent {}

Import

Decorate
• We turn our class into something Angular 2 can use by

decorating it with a Angular specific metadata
• Use the @<decorator> syntax to decorate your classes
• The most common class decorators are @Component,

@Injectable, @Directive and @Pipe
• You can also decorate properties and methods within

your class
• The two most common member decorators are @Input

and @Output

import {Component} from 'angular2/core';  
 
@Component({ 
 selector: 'experiments',  
 templateUrl: './experiments.component.html' 
})  
export class ExperimentsComponent {}

Decorate

Enhance
• This is an iterative process that will vary on a per-case

basis but the idea is to start small and build your
component out

• Enhance with composition by adding methods, inputs
and outputs, injecting services, etc.

• Remember to keep your components small and
focused

import {Component} from 'angular2/core';  
import {Experiment} from '../common/experiment.model';  
import {ExperimentsService} from '../common/experiments.service';  
import {StateService} from '../common/state.service';  
 
@Component({ 
 selector: 'experiments',  
 templateUrl: 'app/experiments/experiments.component.html' 
})  
export class ExperimentsComponent { 
 title: string = 'Experiments Page';  
 body: string = 'This is the about experiments body';  
 message: string;  
 experiments: Experiment[]; 
 
 constructor( 
 private _StateService: StateService, 
 private _ExperimentsService: ExperimentsService) {} 
 
 updateMessage(m: string): void {  
 this._StateService.setMessage(m); 
 } 
}

Enhance

Repeat
• Angular provides a framework where building

subcomponents is not only easy, but also strongly
encouraged

• If a component is getting too large, do not hesitate to
break it into separate pieces and repeat the process

import {ExperimentDetailComponent}
 from './experiment-details/experiment.detail.component';  
 
@Component({ 
 selector: 'experiments',  
 templateUrl: 'app/experiments/experiments.component.html',  
 directives: [ExperimentDetailComponent] 
})  
export class ExperimentsComponent { }

Repeat

Lifecycle Hooks
• Allow us to perform custom logic at various stages of a

component's life
• Data isn't always immediately available in the

constructor
• Only available in TypeScript
• The lifecycle interfaces are optional. We recommend

adding them to benefit from TypeScript's strong typing
and editor tooling

• Implemented as class methods on the component
class

Lifecycle Hooks (cont.)
• ngOnChanges - called when an input or output binding value changes
• ngOnInit - after the first ngOnChanges
• ngDoCheck - developer's custom change detection
• ngAfterContentInit - after component content initialized
• ngAfterContentChecked - after every check of component content
• ngAfterViewInit - after component's view(s) are initialized
• ngAfterViewChecked - after every check of a component's view(s)
• ngOnDestroy - just before the directive is destroyed.

import {Component, OnInit} from 'angular2/core';  
 
export class ExperimentsComponent implements OnInit { 
 constructor( 
 private _StateService: StateService, 
 private _ExperimentsService: ExperimentsService) {} 
 
 ngOnInit() { 
 this.experiments = this._ExperimentsService.getExperiments(); 
 this.message = this._StateService.getMessage(); 
 } 
}

Lifecycle Hooks

Demonstration

Challenges
• Create the file structure for a new widgets feature
• Create the ES6 class for the widgets component
• Import the appropriate modules into the widgets

component
• Decorate the widgets component to use the widgets

template
• Display the widgets component in the home

component
• BONUS Create a simple route to view the widgets

component by itself

Templates

Templates
• Interpolation
• Method Binding
• Property Binding
• Two Way Binding
• Hashtag Operator
• Asterisk Operator
• Elvis Operator (?.)

Template

Data Binding

Interpolation
• Allows us to bind to component properties in out

template
• Defined with the double curly brace syntax:

{{ propertyValue }}
• We can bind to methods as well
• Angular converts interpolation to property binding

{{interpolatedValue}}

Interpolation

Property Bindings
• Flows data from the component to an element
• Created with brackets
• Canonical form is bind-attribute e.g. <img bind-

src=”image.src” />
• When there is no element property, prepend with attr

e.g. [attr.colspan]

Property Bindings (cont.)
Don’t use the brackets if:

• the target property accepts a string value
• the string is a fixed value that we can bake into the

template
• this initial value never changes

Some colored text!

Property Bindings

Event Bindings
• Flows data from an element to the component
• Created with parentheses <button (click)=”foo()”></

button>
• Canonical form is on-event e.g. <button on-

click=”foo()”></button>
• Get access to the event object inside the method via

$event e.g. <button (click)=”callFoo($event)”></button>

<button (click)="alertTheWorld()">Click me!</button>

Event Bindings

Two-way Bindings
• Really just a combination of property and event

bindings
• Used in conjunction with ngModel
• Referred to as "hotdog in a box"

<md-input-container>  
 <label>The awesome input</label>  
 <input md-input [(ngModel)]="dynamicValue" 
 placeholder="Watch the text update!" type="text">  
</md-input-container>  

  
{{dynamicValue}}

Two-way Bindings

Asterisk Operator
• Asterisks indicate a directive that modifies the HTML
• It is syntactic sugar to avoid having to use template

elements directly

<div *ngIf=”userIsVisible”>{{user.name}}</div>  
 
<template [ngIf]="userIsVisible">  
 <div>{{user.name}}</div>  
</template>

Asterisk Bindings

Hashtag Operator
• The hashtag (#) defines a local variable inside our

template
• Template variable is available on the same element,

sibling elements, or child elements of the element on
which it was declared

• To consume, simply use it as a variable without the
hashtag

<p *ngFor="#name of names">{{name}}</p>

Hashtag Operator

Elvis Operator
• Denoted by a question mark immediately followed by a

period e.g. ?.
• If you reference a property in your template that does

not exist, you will throw an exception.
• The elvis operator is a simple, easy way to guard

against null and undefined properties

<md-input-container>  
 <label>Type to see the value</label>  
 <input md-input type="text" #input /> 
</md-input-container>  
 
{{input?.value}}

Elvis Operator

Demonstration

Challenges
• Flesh out the widgets template with the following:

• A template expression via interpolation
• A property binding
• An event binding
• A two-way binding

• BONUS use a local variable via #, use a built-in directive
via *, and use the elvis operator with setTimeout to
demonstrate a temporarily null or undefined value

Services

Services
• Services
• @Injectable
• Injecting Services

Just a Class
• Similarly to components, services are just a class
• We define our service’s API by creating methods

directly on the class
• We can also expose public properties on our class if

need be

export class StateService { 
 private _message = 'Hello Message';  
 
 getMessage(): string {  
 return this._message;  
 }; 
 
 setMessage(newMessage: string): void {  
 this._message = newMessage; 
 }; 
}

Just a Class

@Injectable
• We decorate our service class with the @Injectable to

mark our class as being available to the Injector for
creation

• Injector will throw NoAnnotationError when trying to
instantiate a class that does not have @Injectable
marker

import {Injectable} from 'angular2/core';  
 
@Injectable() 
export class StateService { 
 private _message = 'Hello Message';  
 
 getMessage(): string {  
 return this._message;  
 }; 
 
 setMessage(newMessage: string): void {  
 this._message = newMessage; 
 }; 
}

@Injectable

Injecting a Service
• Injecting a service is as simple as importing the service

class and then defining it within the consumer’s
constructor parameters

• Just like components, we can inject dependencies into
the constructor of a service

• There can be only one instance of a service type in a
particular injector but there can be multiple injectors
operating at different levels of the application's
component tree. Any of those injectors could have its
own instance of the service.

import {Component} from 'angular2/core';  
import {StateService} from '../common/state.service';  
 
@Component({ 
 selector: 'home',  
 templateUrl: 'app/home/home.component.html' 
})  
export class HomeComponent { 
 title: string = 'Home Page';  
 body: string = 'This is the about home body';  
 message: string;  
 
 constructor(private _stateService: StateService) { } 
 
 ngOnInit() { 
 this.message = this._stateService.getMessage(); 
 } 
 
 updateMessage(m: string): void {  
 this._stateService.setMessage(m); 
 } 
}

Injecting a Service

Demonstration

Challenges
• Create a widgets service class with a widgets

collection
• Decorate it with @Injectable()
• Inject it into the widgets component and consume the

widgets collection
• BONUS create a second helper service to use it within

the widgets service

Router

Router
• Component Router
• Navigating Routes
• Route Parameters
• Query Parameters
• Child Routes

Component Router
• Import ROUTE_PROVIDERS, ROUTE_DIRECTIVES, and

the RouteConfig decorator
• Set a base href in the head tag of your HTML like so:

<base href="/">
• Configuration is handled via a decorator function

(generally placed next to a component) by passing in
an array of route definition objects

• Use the router-outlet directive to tell Angular where you
want a route to put its template <router-outlet></
router-outlet>

@RouteConfig([ 
 {path: '/home', name: 'Home', component: HomeComponent, useAsDefault: true}, 
 {path: '/about', name: 'About', component: AboutComponent}, 
 {path: '/experiments', name: 'Experiments', component: ExperimentsComponent} 
])  
export class AppComponent {}

@RouteConfig

<div id="container">  
 <router-outlet></router-outlet>  
</div>

RouterOutlet

Navigating Routes
• Add a routerLink attribute directive to an anchor tag
• Bind it to a template expression that returns an array of

route link parameters <a [routerLink]="['Users']">
Users

• Navigate imperatively by importing Router, injecting it,
and then calling .navigate() from within a component
method

• We pass the same array of parameters as we would to
the routerLink directive this._router.navigate(['Users']);

<div id="menu">  
 <a [routerLink]="['/Home']" class="btn">Home  
 <a [routerLink]="['/About']" class="btn">About  
 <a [routerLink]="['/Experiments']" class="btn">Experiments  
</div>

RouterLink

export class App { 
 constructor(private _router: Router) {} 
 navigate(route) { 
 this._router.navigate([`/${route}`]); 
 } 
}

Router.navigate

Query Parameters
• Denotes an optional value for a particular route
• Do not add query parameters to the route definition

{ path:'/users', name: UserDetail, component:
UserDetail }

• Add as a parameter to the routerLink template
expression just like router params: <a
[routerLink]="['Users', {id: 7}]"> {{user.name}}

• Also accessed by injecting RouteParams into a
component

<div>  
 <button [routerLink]="['./MyComponent', {id: 1}]">  
 My Component Link</button>  
 <button [routerLink]="['./AnotherComponent', {queryParam: 'bar'}]">  
 Another Component Link</button>  
</div>

QueryParam

import { Component } from 'angular2/core';  
import { RouteParams } from 'angular2/router';  
 
@Component({ 
 selector: 'my-component',  
 template: `<h1>my component ({{routeParams.get('id')}})!</h1>  ̀
})  
 
export class MyComponent { 
 constructor(routeParams: RouteParams) { 
 this.routeParams = routeParams; 
 } 
}

RouteParams

Child Routes
• Ideal for creating reusable components
• Components with child routes are “ignorant” of the

parents’ route implementation
• In the parent route config, end the path with /…
• In the child config, set the path relative to the parent

path
• If more than one child route, make sure to set the

default route

@RouteConfig([ 
 { 
 path:'/another-component/...',  
 name: 'AnotherComponent',  
 component: AnotherComponent 
 } 
])  
export class App {}

@RouteConfig([ 
 { 
 path:'/first',  
 name: 'FirstChild',  
 component: FirstSubComponent 
 } 
])  
export class AnotherComponent {}

Child Routes

Demonstration

Challenges
• Create a route to the widgets feature
• Use routeLink to navigate to the widgets feature
• Create a method in the home component that

imperatively navigates to that route
• Add both route parameters and query parameters to

the widgets route
• BONUS create a widget-item child component with a

child route definition

Resources

http://onehungrymind.com/

Thanks!

