A

Build Better Apps

with Angular 2



Strong grasp on how to
build a single, basic feature
In Angular 2




The Angular 2 Big Picture
Prerequisite Primer in Tooling
Component Fundamentals
Agenda
Templates
Services

Routing



The Angular 2 Big Picture

3¢



The Demo Application

A simple web application with basic features

* We will be building out a new widgets feature

* Feel free to use the existing code as a reference point
* Please explore! Don't be afraid to try new things!



&« C 7 _d localhost:3000/home -

[M localhost:3000/home b

m G

AWESOMELOGO Home = About  Experiments

Home Page

This is the about home body

Home: Hello Message

Hello Message Update Message




http://bit.ly/fem-ng2-simple-app

:'.



http://onehungrymind.com/fem-examples/

7y



http://bit.ly/fem-ng2-no-ts

7y



So why Angular 2?



Why Angular 2?

* Distilled all the best practices of Angular 1.x Into
Angular 2

* By focusing on standards, we get twice the power with
half the framework

 Dramatically improved changed detection with a
relentless focus on speed and performance

+ Reactive mechanisms baked into the framework

» Teamwork! The Angular team is working with some
really smart people from other projects to make
Angular and web development awesome



ﬁ@MetaQ

{DIRECTIVE}
<TEMPLATE>

ﬁ@Metadata
(event binding) {COMPONENT}

The Big Picture

K/

[property binding]

Injector

{SERVICE}

{SERVICE)




The Main Building Blocks

* Module
* Component
» Metadata
* Template
» Data Binding
* Service
* Directive
* Dependency Injection



Bootstrapping the App

* Import the bootstrap module

* Import your top-level component

 Import application dependencies

» Call bootstrap and pass in your top-level component as
the first parameter and an array of dependencies as the

second



import {bootstrap} from 'angular2/platform/browser’;
import {ROUTER_PROVIDERS} from 'angular2/router';
import {AppComponent} from './app.component';

bootstrap(AppComponent, I
ROUTER _PROVIDERS

)



Module

» Uses ES6 module syntax

» Angular 2 applications use modules as the core
mechanism for composition

* Modules export things that other modules can import

 Keep your modules fine-grained and self-documenting




// In home.component.ts
export class HomeComponent { }

// In app.component.ts
import {HomeComponent} from './home/home.component';



Component

« Components are just ES6 classes

* Providers (Services) are injected in the constructor

* Need to explicitly define providers and directives within
the component decoration

* Hook into the component lifecycle with hooks

* Properties and methods of the component class are
avallable to the template



export class HomeComponent implements OnInitf{
title: string = 'Home Page';
body: string = 'This is the about home body';
message: string;

constructor(private _stateService: StateService) { }

ngOnInit() {
this.message = this._stateService.getMessage();

}

updateMessage(m: string): void {
this. stateService.setMessage(m);

}
¥



Metadata

* Metadata allows Angular to process a class

» We can attach metadata with TypeScript using
decorators

 Decorators are just functions

* Most common is the @Component() decorator

» Takes a config option with the selector, template(Url),
providers, directives, pipes and styles




@Component ({

selector: 'home',

templateUrl: ‘'app/home/home.component.html’
’)

export class HomeComponent{ }



Template

* A template i1Is HTML that tells Angular how to render a
component

» Templates include data bindings as well as other
components and directives

» Angular 2 leverages native DOM events and properties
which dramatically reduces the need for a ton of built-
In directives

» Angular 2 leverages shadow DOM to do some really
Interesting things with view encapsulation



<TEMPLATE> [property binding]
ﬁ@Metadata

{COMPONENT}

(event binding)

Template



@Component ({
selector: 'experiment',
templateUrl: './experiment.detail.component.html',

styles: [°
.experiment {
cursor: pointer;
outline: 1px lightgray solid;
padding: 5pXx;
margin: 5px;



@Component ({
selector: 'experiment',

temp late:
<div class="experiment" (click)="doExperiment()">

<h3>{{ experiment.name }}</h3>

<p>{{ experiment.description }}</p>

<p><strong>{{experiment.completed}}</strong></p>
</div>

styles: [°
.experiment {
cursor: pointer;
outline: 1lpx lightgray solid;
padding: 5px;
margin: 5pXx;

})



Data Binding

* Enables data to flow from the component to template
and vice-versa

* Includes interpolation, property binding, event binding,
and two-way binding (property binding and event
binding combined)

* The binding syntax has expanded but the result is a
much smaller framework footprint




{{value}}

Q.__

[property] = “value”

Q____

(event) = “handler”

— b

[(ngModel)] = “property”

P

Data Binding

<TEMPLATE>

{LNINOdWO02}



<hl>{{title}}</h1l>
<p>{{body}}</p>
<hr/>
<experiment xngFor='"#experiment of experiments"
[experiment]="experiment'"></experiment>
<hr/>
<div>
<h2 class="text-error'">Experiments: {{message}}</h2>
<form class="form-inline">
<input type="text"
[ (ngModel) ]="message" placeholder="Message">
<button type="submit" class="btn"
(click)="updateMessage(message)'>Update Message
</button>
</form>
</div>



Service

* A service Is just a class

» Should only do one specific thing

* Take the burden of business logic out of components

» Decorate with @Injectable when we need to inject
dependencies into our service



import {Injectable} from 'angular2/core';
import {Experiment} from './experiment.model’;

@Injectable()
export class ExperimentsService {
private experiments: Experiment[] = [];

getExperiments(): Experiment[] {
return this.experiments;
};
I3



Directive

* A directive Is a class decorated with @Directive
« A component is just a directive with added template
features

* Built-in directives include structural directives and
attribute directives



import { Directive, ElementRef } from 'angular2/core';

@irective({
selector: '[femBlinker]'

F)

export class FemBlinker {
constructor(element: ElementRef) {
let interval = setInterval(() => {
let color = element.nativeElement.style.color;
element.nativeElement.style.color
= (color === '' || color === 'black') ? 'red' : 'black';
}, 300);

setTimeout(() => {
clearInterval(interval);
}, 10000);



Dependency Injection

» Supplies instance of a class with fully-formed
dependencies

» Maintains a container of previously created service
Instances

* To use DI for a service, we register it as a provider In
one of two ways: when bootstrapping the application,
or In the component metadata



// experiments.service.ts
import {Injectable} from 'angular2/core';

@Injectable()
export class ExperimentsService { }

// experiments.component.ts
import {ExperimentsService} from
experiments.service';

import {StateService} from

. ./common/

. ./common/state.service':

export class ExperimentsComponent {
constructor(
private _stateService: StateService,
private _experimentsService: ExperimentsService) {}



Change Detection

* Checks for changes in the data model so that it can re-
render the DOM

» Changes are caused by events, XHR, and timers

« Each component has its own change detector

* We can use ChangeDetectionStrategy.OnPush along
with immutable objects and/or observables.

* We can tell Angular to check a particular component by
iInjecting ChangeDetectorRef and calling
markForCheck() inside the component



export interface Item {
1d: number;
name: string;
description: string;

&

export interface AppStore {
items: Item[];
selectedItem: Item;

b



Testing

» Angular wraps Jasmine methods

 Import all necessary Jasmine methods from angular2/
testing

 Import the classes to test

* Include providers by importing beforeEachProviders
and then calling it with a method that returns an array
of imported providers

» Inject providers by calling inject([arrayOfProviders],
(providerAliases) => {}) inside a beforeEach or it block



import { describe, it, expect } from 'angular2/testing’;
import { AppComponent } from './app.component';

describe( 'AppComponent', () => {

it('should be a function', () => {
expect(typeof AppComponent).toBe('function');
F);
r);



Architectural Best Practices

* Include all files pertinent to a component in the same folder

» Remember CIDER for creating components: (Create class,
Import dependencies, Decorate class, Enhance with
composition, Repeat for sub-components

« Keep templates small enough to put in the main component

file directly
 Delegate business logic from the component to a provider

* Don't be afraid to split a component up if it Is growing too

large
 Constantly consider change detection implications as you

develop an app




Demonstration

7y



Challenges

» Make sure that you can run the sample application

* |dentify the major Anqular 2 pieces in the sample
application

» Add a new property to one of the feature components

and bind to 1t in the view
» Add a new property to the StateService and consume it

In a component
* BONUS Create an interface for the new property and

type i1t in the StateService and your consuming -
component ;,'



Prerequisite Primer in Tooling

3¢



Tooling Primer

* Module Loading
* Webpack

* ES6

» ES5

» TypeScript

* Typings









Module Loading

* Modular code is not required to develop with Angular,
but It Is recommended

* Allows us to easily use specific parts of a library

* Erases collisions between two different libraries

* We don't have to include script tags for everything

* Because modules are not supported, we have to
translate a module (file) to a pseudo module (wrapped

function)



Webpack

* One of the most popular module loaders

» Allows us to include any sort of file as a module (CSS,
JSON, etc.)

 Useful not only for module loading, but also the entire
build process



)]
) 2]

modules webp ack static
with dependencies MODULE BUNDLER assets

Webpack



ES6

* ES6/ES2015 Is the latest standard for Javascript

« Comes with many helpful additions, such as a module
system, new array methods, classes, multi-line
templates, and arrow functions

* The most important features for us are modules and

classes

- Although we don't have to use I, It greatly enhances
the development experience

* Classes and modules FTW!



class Point {
constructor(x y) {
this.x = Xx:
this.y = y;
I3
toString() {

return " (${this.x}, ${this.y}) ;

}
¥



TypeScript

* |s a typed superset of Javascript

* |s a compiled language, so it catches errors before
runtime

* Includes the features of ES6 but with types, as well as
better tooling support

 TypeScript allows us to decorate our classes via
@<Decorator> the syntax

* Classes, modules, types, interfaces and decorators
FTW!



interface ClockInterface {
currentTime: Date;
setTime(d: Date);

¥

class Clock implements ClockInterface <
currentTime: Date;
setTime(d: Date) {
this.currentTime = d;

L

constructor(h: number, m: number) { }

L



Typings

* We use the typings NPM package to handle the type
definitions associated with third-party libraries
* By creating a postinstall script in package.json, we can

iInstall the appropriate typings immediately after all
NPM packages have been downloaded

* To Install a definition file for a particular library, run
typings install -g <package> --ambient --save
* Treat the typings.json file just like the package.json file



Angular 2 with ES6

« Almost the same as TypeScript without types and

Interfaces
 Define dependency paramenters explicitly for DI to

work properly

 Use the same build system, just switch out your
transpiler (babel). Or use your TypeScript compiler and
just not use TypeScript features

» Babel has experimental features that TypeScript does

not



Angular 2 with ES5

» Supported natively

* No module system like angular 1.x. Use IIFE's or other
3rd party module system

 Exposes a global ng namespace with methods to build
application

* No need for a build system or transpiler

* No type files or configs

* Documentation iIs lacking

* ot recommended



Demonstration

7y



Challenges

- We'll play this by ear. :D



Component Fundamentals

3¢



Component Fundamentals

* Class

* Import

* Decorate

* Enhance

* Repeat

* Lifecycle Hooks



<TEMPLATE> [property binding]
ﬁ@Metadata

{COMPONENT}

(event binding)

Component



Class == Inheritance



Class

* Create the component as an ES6 class
* Properties and methods on our component class will
be available for binding in our template



export class ExperimentsComponent { }



Import

 Import the core Angular dependencies

* Import 3rd party dependencies

* Import your custom dependencies

* This approach gives us a more fine-grained control over
the managing our dependencies



import {Component} from 'angular2/core’;

export class ExperimentsComponent {}



Decorate

* We turn our class into something Angular 2 can use by
decorating it with a Angular specific metadata

 Use the @<decorator> syntax to decorate your classes

* The most common class decorators are @Component,
@Injectable, @Directive and @Pipe

* You can also decorate properties and methods within
your class

* The two most common member decorators are @Input
and @Output



import {Component} from 'angular2/core’;

@Component ({

selector: 'experiments',

templateUrl: './experiments.component.html’
+)

export class ExperimentsComponent {}



Enhance

* This Is an Iterative process that will vary on a per-case
basis but the idea is to start small and build your
component out

* Enhance with composition by adding methods, inputs
and outputs, injecting services, etc.

* Remember to keep your components small and
focused



import {Component} from 'angular2/core';

import {Experiment} from '../common/experiment.model';

import {ExperimentsService} from '../common/experiments.service';
import {StateService} from '../common/state.service';
@Component ({

selector: 'experiments',

templateUrl: ‘'app/experiments/experiments.component.html’
)
export class ExperimentsComponent {

title: string = 'Experiments Page';

body: string = 'This is the about experiments body';

message: string;

experiments: Experiment[];

constructor(
private _StateService: StateService,
private _ExperimentsService: ExperimentsService) {}

updateMessage(m: string): void {
this._StateService.setMessage(m);
I3

}



Repeat

» Angular provides a framework where building

subcomponents is not only easy, but also strongly
encouraged

* If a component is getting too large, do not hesitate to
break 1t Into separate pieces and repeat the process



import {ExperimentDetailComponent}
from './experiment-details/experiment.detail.component’;

@Component ({
selector: 'experiments',
templateUrl: 'app/experiments/experiments.component.html’,
directives: [ExperimentDetailComponent]

})

export class ExperimentsComponent { }



Lifecycle Hooks

* Allow us to perform custom logic at various stages of a
component’s life

 Data isn't always immediately available in the
constructor

* Only available in TypeScript

* The lifecycle interfaces are optional. We recommend
adding them to benefit from TypeScript's strong typing
and editor tooling

 Implemented as class methods on the component
class



Lifecycle Hooks (cont.)

- ngOnChanges - called when an input or output binding value changes
* ngOnlinit - after the first ngOnChanges

* ngDoCheck - developer's custom change detection
 ngAfterContentinit - after component content initialized

- ngAfterContentChecked - after every check of component content

» ngAfterViewlnit - after component's view(s) are initialized

- ngAfterViewChecked - after every check of a component's view(s)

- ngOnDestroy - just before the directive is destroyed.



import {Component, OnInit} from 'angular2/core'’;

export class ExperimentsComponent implements OnInit {
constructor(
private StateService: StateService,
private _ExperimentsService: ExperimentsService) {}

ngoOnInit() {
this.experiments = this._ExperimentsService.getExperiments();
this.message = this._StateService.getMessagel();

¥
}



Demonstration

7y



Challenges

* Create the file structure for a new widgets feature

* Create the ES6 class for the widgets component

* Import the appropriate modules into the widgets
component

 Decorate the widgets component to use the widgets
template

* Display the widgets component in the home
component

* BONUS Create a simple route to view the widgets -
component by itself ;,'



Templates

3¢



Templates

* Interpolation

» Method Binding

* Property Binding
» Two Way Binding
» Hashtag Operator
» Asterisk Operator
» Elvis Operator (?.)



<TEMPLATE> [property binding]
ﬁ@Metadata

{COMPONENT}

(event binding)

Template



{{value}}

Q.__

[property] = “value”

Q____

(event) = “handler”

— b

[(ngModel)] = “property”

P

Data Binding

<TEMPLATE>

{LNINOdWO02}



Interpolation

* Allows us to bind to component properties in out
template

» Defined with the double curly brace syntax:
{{ propertyValue }}

* We can bind to methods as well

» Angular converts interpolation to property binding



<span>{{interpolatedValue}}<span>



Property Bindings

* Flows data from the component to an element

» Created with brackets <img [src]="image.src” />

» Canonical form is bind-attribute e.g. <img bind-
src="Image.src” />

* When there is no element property, prepend with attr
e.g. [attr.colspan]



Property Bindings (cont.)

Don't use the brackets if:
* the target property accepts a string value
» the string Is a fixed value that we can bake into the
template
» this Initial value never changes



<span [style.color]="componentStyle'">Some colored text!</span>



Event Bindings

* Flows data from an element to the component

» Created with parentheses <button (click)="foo()"></
button>

» Canonical form is on-event e.g. <button on-
click="foo()"></button>

* Get access to the event object inside the method via
Sevent e.g. <button (click)="callFoo(Sevent)"></button>



<button (click)="alertTheWorld()">Click me'</button>



Two-way Bindings

* Really just a combination of property and event
bindings

* Used In conjunction with ngModel

* Referred to as "hotdog in a box”



<md-1input-container>
<label>The awesome 1input</label>
<input md-input [(ngModel)]="dynamicValue"
placeholder="Watch the text update!" type="text">
</md-1input-container>
<br>
<span>{{dynamicValue}}</span>



Asterisk Operator

» Asterisks indicate a directive that modifies the HTML
* [t IS syntactic sugar to avoid having to use template
elements directly



<div *ngIf="userIsVisible”>{{user.name}}</div>

<template [ngIf]="userlIsVisible">
<div>{{user.name}}</div>
</template>



Hashtag Operator

 The hashtag (#) defines a local variable inside our
template

* Template variable is available on the same element,
sibling elements, or child elements of the element on
which it was declared

* To consume, simply use It as a variable without the
hashtag



<p *ngFor="#name of names">{{name}}</p>



Elvis Operator

 Denoted by a question mark immediately followed by a
period e.g. ?.

* If you reference a property in your template that does
not exist, you will throw an exception.

* The elvis operator I1s a simple, easy way to guard
against null and undefined properties



<md-1nput-container>
<label>Type to see the value</label>
<input md-input type="text" #input />
</md-input-container>

<strong>{{input?.value}}t</strong>



Demonstration

7y



Challenges

* Flesh out the widgets template with the following:
A template expression via interpolation
» A property binding
* An event binding
» A two-way binding

* BONUS use a local variable via #, use a built-in directive
via *, and use the elvis operator with setTimeout to
demonstrate a temporarily null or undefined value

=

W



Services

3¢



Services

» Services
* @Injectable
* Injecting Services



Just a Class

 Similarly to components, services are just a class

* We define our service’s APl by creating methods
directly on the class

* We can also expose public properties on our class if
need be



export class StateService {
private message = 'Hello Message';

getMessage(): string {
return this. message;

b

setMessage(newMessage: string): void {
this. _message = newMessage;

b



@Injectable

* We decorate our service class with the @Injectable to
mark our class as being available to the Injector for
creation

* Injector will throw NoAnnotationError when trying to

Instantiate a class that does not have @Injectable
marker



import {Injectable} from 'angular2/core';

@Injectable()
export class StateService {
private message = 'Hello Message';

getMessage(): string {
return this. message;

b

setMessage(newMessage: string): void {
this._message = newMessage;

&



Injecting a Service

* Injecting a service Is as simple as importing the service
class and then defining it within the consumer’s
constructor parameters

» Just like components, we can inject dependencies into
the constructor of a service

* There can be only one instance of a service type in a
particular injector but there can be multiple injectors
operating at different levels of the application’s
component tree. Any of those injectors could have its
own instance of the service.



import {Component} from 'angular2/core'’;
import {StateService} from '../common/state.service';

@Component ({
selector: 'home',
templateUrl: 'app/home/home.component.html’
})
export class HomeComponent {
title: string = 'Home Page';
body: string = 'This is the about home body';
message: string;

constructor(private _stateService: StateService) { }

ngoOnInit() {
this.message = this. stateService.getMessagel();

}

updateMessage(m: string): void {
this. stateService.setMessage(m);

¥
L



Demonstration

7y



Challenges

* Create a widgets service class with a widgets
collection

* Decorate it with @Injectable()

* Inject 1t Into the widgets component and consume the
widgets collection

* BONUS create a second helper service to use i1t within
the widgets service

=

W






Router

* Component Router
* Navigating Routes
* Route Parameters
* Query Parameters
* Child Routes



Component Router

 Import ROUTE_PROVIDERS, ROUTE_DIRECTIVES, and
the RouteConfig decorator

» Set a base href in the head tag of your HTML like so:
<base href="/">

* Configuration 1s handled via a decorator function
(generally placed next to a component) by passing in
an array of route definition objects

» Use the router-outlet directive to tell Angular where you

want a route to put its template <router-outlet></
router-outlet>



@RouteConfig( [
{path: '/home', name: 'Home', component: HomeComponent, useAsDefault: true},
{path: '/about', name: 'About', component: AboutComponent},
{path: '/experiments', name: 'Experiments', component: ExperimentsComponent}

1)
export class AppComponent {}



<div id="container">
<router-outlet></router-outlet>
</div>



Navigating Routes

 Add a routerLink attribute directive to an anchor tag

* Bind 1t to a template expression that returns an array of
route link parameters <a [routerLink]="[Users']">
Users</a>

» Navigate imperatively by importing Router, injecting It,
and then calling .navigate() from within a component
method

* We pass the same array of parameters as we would to
the routerLink directive this._router.navigate( [Users'] );



<div id="menu">

<a [routerLink.
<a |routerLink]
<a |routerLink]

</div>

' /Home']" class="btn">Home</a>
[ '/About']" class="btn'">About</a>

| '/Experiments']" class="btn">Experiments</a>



export class App {
constructor(private _router: Router) {}

navigate(route) {
this. router.navigate([ /${route} ]);

¥
}



Query Parameters

* Denotes an optional value for a particular route

* Do not add query parameters to the route definition
{ path./users’, name: UserDetail, component:
UserDetall }

» Add as a parameter to the routerLink template
expression just like router params: <a
[routerLink]="['Users’, {id: 7}]"> {{user.name}} </a>

* Also accessed by injecting RouteParams into a
component



<div>
<button [routerLink]="['./MyComponent', <{id: 1}]">
My Component Link</button>
<button [routerLink]="['./AnotherComponent', {queryParam: 'bar'}]">
Another Component Link</button>
</div>




import { Component } from 'angular2/core';
import { RouteParams } from 'angular2/router';

@Component ({
selector: 'my-component’,
template: “<hl>my component ({{routeParams.get('id')}})!</h1>"

F)

export class MyComponent {
constructor(routeParams: RouteParams) {
this.routeParams = routeParams;

L
}



Child Routes

* |deal for creating reusable components

» Components with child routes are “ignorant” of the
parents’ route Implementation

* In the parent route config, end the path with /...

* In the child config, set the path relative to the parent
path

* If more than one child route, make sure to set the
default route



@RouteConfig( [
{
path:'/another-component/...",
name: 'AnotherComponent’,
component: AnotherComponent

s
1)
export class App {}

@RouteConfig( [
{
path:'/first’,
name: 'FirstChild’',
component: FirstSubComponent

¥
1)

export class AnotherComponent {}



Demonstration

7y



Challenges

* Create a route to the widgets feature

 Use routeLink to navigate to the widgets feature

* Create a method in the home component that
Imperatively navigates to that route

» Add both route parameters and query parameters to
the widgets route

* BONUS create a widget-item child component with a
child route definition

=

W



Resources



http://onehungrymind.com/






